Mot-clé : Parallelism

2009

Adding Automatic Parallelization to Faust

Linux Audio Conference, 2009, Parma, Italy

Faust 0.9.9.5 introduces new compilation options to do automatic parallelization of code using OpenMP. This paper explains how the automatic parallelization is done and presents some benchmarks.

Yann Orlarey, Stéphane Letz, Dominique Fober

Mots-clés :
FAUST, OpenMP, Parallelism, Processing, Signal

2005

Jack audio server for multi-processor machines

International Computer Music Conference, 2005, Barcelona, Spain. pp.1-4

Jack is a low-latency audio server, written for POSIX conformant operating systems such as GNU/Linux. It can connect a number of different applications to an audio device, as well as allowing them to share audio between themselves. We present a new C++ version for multi-processor machines that aims at removing some limitations of the current design: the activation system has been changed for a data flow model and lock-free programming techniques for graph acces... read_more

Jack is a low-latency audio server, written for POSIX conformant operating systems such as GNU/Linux. It can connect a number of different applications to an audio device, as well as allowing them to share audio between themselves. We present a new C++ version for multi-processor machines that aims at removing some limitations of the current design: the activation system has been changed for a data flow model and lock-free programming techniques for graph access have been used.

Stéphane Letz, Yann Orlarey, Dominique Fober

Mots-clés :
Audio, Lock-free, Multi-processor, Parallelism, Real-time

jackdmp: Jack server for multi-processor machines

Linux Audio Conference, 2005, Karlsruhe, Germany. pp.29-36

jackdmp is a C++ version of the Jack low-latency audio server for multi-processor machines. It is a new implementation of the jack server core features that aims in removing some limitations of the current design. The activation system has been changed for a data flow model and lock-free programming techniques for graph access have been used to have a more dynamic and robust system. We present the new design and the implementation for MacOSX.

Stéphane Letz, Dominique Fober, Yann Orlarey

Mots-clés :
Audio, Lock-free, Multi-processor, Parallelism, Real-time