
Providing Music Notation Services over Internet

Mike SOLOMON, Dominique FOBER, Yann ORLAREY and Stéphane LETZ
Grame

Centre national de création musicale
Lyon - France

mike@mikesolomon.org, {fober, orlarey, letz}@grame.fr

Abstract

The GUIDO project gathers a textual format
for music representation, a rendering engine op-
erating on this format, and a library providing
a high level support for all the services related
to the GUIDO format and it’s graphic render-
ing. The project includes now an HTTP server
that allows users to access the musical-score-
related functions in the API of the GUIDO-
Engine library via uniform resource identifiers
(URIs). This article resumes the core tenants
of the REST architecture on which the GUIDO
server is based, going on to explain how the
server ports a C/C++ API to the web. It con-
cludes with several examples as well as a discus-
sion of how the REST architecture is well suited
to a web-API that serves as a wrapper for an-
other API.

1 Online musical editing

As client-server models for the processing, vi-
sualizing and analysis of data become more
widespread in mobile computing (WordPress,
YouTube, Instagram, SoundCloud), music en-
graving has entered the fray with various web-
based score editing services. The GUIDO
HTTP server merges the idea of a web-based
music editor with a RESTful web service in or-
der to expose the public API of the GUIDO-
Engine library[Hoos and Hamel, 1997]. This sec-
tion explores several categories of online musical
editing services, concluding with a discussion of
general trends in current technologies and the
main problems that the tool outlined in this pa-
per – the GUIDO HTTP server – seeks to ad-
dress.

1.1 Online music notation editors

As of the writing of this paper (2014), there are
three main online musical score editors – Note-

flight1, Melodus2 and Scorio3. Noteflight and
Melodus seek to provide a full-featured music
editing platform online, similar to Google Doc-
uments’ role in the world of office suites. Scorio
is a hybrid tool that mixes rudimentary layout
via a mobile editing platform with publication-
quality layout via JIT compilation through Lily-
Pond when possible.

1.2 Online score sharing software
Several music tools, such as Sibelius4, Mus-
eScore [Bonte, 2009], Maestro5, and Capriccio6,
offer online services where scores composed us-
ing this software can be uploaded, browsed, and
downloaded online. Capriccio, can be run on-
line in limited form as a Java applet. Mus-
eScore, Sibelius, and Maestro allow for auto-
matic score/MIDI synchronisation of embedded
files.

1.3 Online music JIT compilation
services

WebLily7, LilyBin8, and OMET9 are all JIT
compilation services that run the LilyPond ex-
ecutable to compile uploaded code and return
embedded SVG, canvas or PDF visualizations
depending on the tool. The GUIDO note server
[K. and Hoos, 1998] uses the GUIDOEngine li-
brary to compile Guido Music Notation Format
[Hoos et al., 1998] strings into images.

1.4 A RESTful alternative
All of the tools described above facilitate the
creation or visualization of scores via a variety of
input methods (WYSIWYG, text, MusicXML

1http://www.noteflight.com
2http://www.melod.us
3https://scorio.com
4http://www.sibelius.com
5http://www.musicaleditor.com
6http://cdefgabc.com
7http://weblily.net
8http://www.lilybin.com
9http://www.omet.ca

http://www.noteflight.com
http://www.melod.us
https://scorio.com
http://www.sibelius.com
http://www.musicaleditor.com
http://cdefgabc.com
http://weblily.net
http://www.lilybin.com
http://www.omet.ca

etc.) but are not designed to facilitate low-
latency server-client exchanges of score-related
information. This is, in part, due to the fact
that the majority of automated music engraving
programs do not offer public APIs and are not
designed to provide end-user information other
than visual representations of scores and various
non-human-readable file formats. The GUIDO
Engine API [Daudin et al., 2009] [Grame, 2014b]
seeks to remedy this issue by offering a public
API that reports information about scores such
as the number of pages, duration, and the place-
ment of musical events both in time and on the
page. The representational state transfer [Field-
ing, 2000], or REST, architectural style, is well
suited for the porting of an API to the web be-
cause it is optimized for a system that is state-
less, meaning that it does not require remember-
ing intermediary states of a user. Contrast this
to, for example, a server that needs to retain an
undo history or the state of a logged-on user.
As a result, the design of the server is clearer,
quick and easy to scale [Richardson and Ruby,
2008]. This is further discussed in Section 3 and
Section 4. The GUIDO HTTP server thus fills
a gap in online score editing technology simi-
lar to the gap filled by Atom web feeds in news
services.

2 Representational state transfer

Representational state transfer [Fielding, 2000]
is an ubiquitous contemporary server architec-
ture style [Richardson and Ruby, 2008]. The
REST architecture is intended as a set of con-
straints to facilitate exchange in systems that
deliver and report on hypermedia resources.
The architectural style is based on a tradi-
tional client-server model with the design trade-
off that the server is stateless, meaning that
all of the information required to process a
request is contained in the request itself and
the server does not need to store intermedi-
ary states. In order to speed up interaction
with the server, the REST architecture calls
for client-side caching of data, which can po-
tentially eliminate certain redundant server re-
quests. It also calls for a uniform interface, har-
monizing all applications’ interactions with the
server at the expense of application-specific in-
teraction models that could speed up exchanges.
Layering is possible in this model, with interme-
diary servers translating various forms of short-
hand into longer or less human-readable server
commands. With this layering comes the con-

straint that exchanging agents cannot “see” be-
yond the layer with which they are communicat-
ing. As the burden on the client to be server-
compliant is high in REST, the architectural
style provides an optional constraint of servers’
offering downloadable code-on-demand (scripts,
applets, etc.) to ease client-side software devel-
opment.

Certain specific architectural elements are
put into place in order to facilitate the above-
described architecture. In addition to the trans-
ferring of data, REST calls for the transferring
of meta-data about a server response. This al-
lows for the client side to have information about
how to de-encode the response without needing
to send specific de-encoding instructions. REST
also encourages resource requests that are con-
structed in a hierarchical and human-readable
manner. For example, accessing today’s weather
in Lyon, France is preferably
http://website.fr/France/Lyon/weather/today

rather than
http://website.fr/?country=France&town=Lyon
&feature=weather&date=today

A server compliant with the REST architecture
is said to be a RESTful server.

3 The GUIDO HTTP server : an
overview

The GUIDO Hypertext Transfer Protocol Dae-
mon (HTTP) server is a RESTful server that
compiles strings written in the GUIDO Music
Notation (GMN) Format into musical scores and
reports to the client several representations of
this data.10 It accepts user requests via two
main methods of the HTTP protocol: POST,
used to place elements on the server, and GET,
used to retrieve information about elements on
the server.

3.1 The POST method
POST, as implemented by the GUIDO server,
is RESTful insofar as it does not save any in-
formation about the user state and only saves
information sent by the user.

Assuming that a GUIDO HTTP server is run-
ning on the subdomain http://guido.grame.
fr on port 8000, a POST request containing
GMN code [a b c d] is sent via curl as fol-
lows:
curl -d"data=[a b c d]" http://guido.grame.fr:8000

10In this paper, the terms “GMN” and “score” are used
interchangeably when talking about music treated by or
stored on the server.

http://guido.grame.fr
http://guido.grame.fr

Assuming that the GMN code is valid, re-
sponse, in JSON, gives the user a unique iden-
tifier generated using an SHA-1 tag correspond-
ing to the input file. This ensures that the
server will not store the same information mul-
tiple times:
{
"ID": "07a21ccbfe7fe453462fee9a86bc806c8950423f"

}
This identifier is generated via the SHA-

1 cryptographic hashing algorithm [Gallagher,
2012] that encodes any digital document as a
160-bit hash or key. The algorithm has a low
incidence of collision (1

263
), making it almost im-

possible for two documents to share the same
SHA-1 key.

This is the server’s internal representation of
the GMN code and used for all subsequent re-
quests to the server. To access it, it is appended
onto the URI. The following is a simple request
using the SHA-1 tag (hereafter shortened to fa-
cilitate readability) that results in the image
seen in Figure 1.

curl http://guido.grame.fr:8000/07a21...0423f

Figure 1: Score with SHA-1 tag 07a21...0423f.

Technically speaking, the need to use an SHA-
1 key in order to access scores and score-related
information is not strictly RESTful. A strictly
RESTful implementation would embed the score
in every GET request. In accepting a GMN
score via POST, the server must “remember” the
score, which violates the principle of stateless-
ness. The posting of a resource on the server
is generally considered an acceptable compro-
mise [Richardson and Ruby, 2008] so long as
it is uniquely identifiable in an URI and the
resource cannot be modified once uploaded on
the server. This is the case with scores on the
GUIDO server.

3.2 The GET method
Requests sent via GET query the server for in-
formation about scores. The main return type
is JSON for all queries related to information
about a score, MIDI for midi realizations of the
score, and PNG for all queries asking for visual
representations of the score itself. The latter
is also possible in JPEG and SVG. All return
types are specified in meta-data as per REST
guidelines (see Section 2).

3.3 Uniform interface
The RESTful style specifies that a server’s in-
terface must be uniform, meaning that the op-
erations that it executes must be the same for
all clients interacting with the server. Further-
more, these operations should be conceptually
different with no overlap and should ideally be
widely used. The HTTP standard provides sev-
eral atomic options that allow for the uniform
interaction with a server [Richardson and Ruby,
2008]. The GUIDO web API uses the GET and
POST methods from HTTP via libmicrohttpd
[Grothoff, 2014], leaving out less widely-used
methods such as PUT and DELETE in an ef-
fort to expose its full functionality to the largest
group of client applications possible.

4 The GUIDO HTTP server as an
API

The GUIDO HTTP server attempts to expose
as much of the public API of the GUIDO En-
gine as possible, implementing one-to-one equiv-
alencies with its functions when possible. Ar-
guments are passed to these functions via op-
tional key-value pairs in the URI’s query part.
Defaults are provided for all key-value pairs in
case of omission. An exhaustive overview of the
API can be found in the GUIDO HTTP server’s
documentation[Grame, 2014a].

This section aims to discuss some of the broad
decisions made in exposing a C++ API via a
web interface, giving three exhaustive examples
at the end showing how the API is exposed.

4.1 SHA-1 key as musical score
Section 3.1 entertains the manner in which SHA-
1 keys replace GMN scores in URIs sent to the
server via in order to avoid having to send GMN
scores in GET requests. This key corresponds to
both an ARHandler, or Abstract Representation,
and GRHandler, or Graphic Representation of a
score in the GUIDO API. These two structures
are used in order to generate information about
the musical contents of a score (ARHandler) as
well as its layout (GRHandler). The representa-
tion of both structures by one SHA-1 key allows
the user to have a unique point of entry for each
GMN score that conflates the data generated by
several structures.

4.2 Function as URI segment
A function in the GUIDO public API is
represented as a segment of the URI sent
to the server. For example, the function

C/C++ API URI segment scope
GuidoGetPageCount pagescount score
GuidoGetVoiceCount voicescount score
GuidoDuration duration score
GuidoFindPageAt pageat score
GuidoGetPageDate pagedate score
GuidoGetPageMap pagemap score
GuidoGetSystemMap systemmap score
GuidoGetStaffMap staffmap score
GuidoGetVoiceMap voicemap score
GuidoGetTimeMap timemap score
GuidoAR2MIDIFile midi score
GuidoGetVersionStr version engine
GuidoGetLineSpace linespace engine

Table 1: GUIDO API public functions and
their representations as URI segments.

GuidoGetPageCount in the GUIDO public API
is represented as the URI segment pagescount.

The GUIDO public API provides two generic
categories of functions:

• Functions addressed to the engine and re-
porting information about GUIDO.

• Functions addressed to a specific score pro-
cessed by GUIDO.

With the C/C++ API, functions addressed to
a score take score handlers as argument, which
may be viewed as pointers to the internal score
object. With HTTP, the SHA-1 tag plays the
role of these score score handlers and the com-
plete URI defines the scope of the request :

• Requests addressed to the engine are not
prefixed.

• Requests addressed to a specific score are
prefixed by the SHA-1 key.

For example,
http://guido.grame.fr:8000/version

reports the version of both GUIDO and the
GUIDO server. On the other hand, the URI

http://guido.grame.fr:8000/<key>/voicescount
where <key> is a SHA-1 key

exposes the API function GuidoCountVoices
via the URI segment voicescount, giving the
voice count of specific score.

Table 1 contains a succinct list of the servers’
naming conventions showing the name of a func-
tion in the GUIDO public API, its representa-
tion as a server URI segment, and it’s scope.
Note that the only generic URI segment that
does not correspond to a GUIDO public API

function is server, which gives the version num-
ber of the server and thus is not related to the
GUIDO API proper.

4.3 Arguments as key-value pairs
Several of the API functions listed in Table 1
require arguments in order to generate results.
For example, the function GuidoGetStaffMap
requires an argument staff specifying the staff
for which the map should be generated. These
arguments are specified in key-value pairs in the
URI.
http://guido.grame.fr:8000/<key>/staffmap?staff=1

Default arguments are provided for all
argument-taking functions in case the user
fails to specify an argument. These arguments
are values that would work in the majority of
scores (for example, page=1) and often come
from defaults provided in the API.

4.4 Layout and formatting options as
key-value pairs

The GUIDO server allows for the specifica-
tion of several parameters relating to the lay-
out and formatting of scores as key-value
pairs. These parameters are used in sev-
eral different ways in the GUIDO public
API. Some, such as topmargin, become val-
ues of structures such as GuidoPageFormat.
Others, such as resize, represent calls to
functions that effect layout (in this case
GuidoResizePageToMusic). Yet others, such as
width, are used at several points in the lay-
out process depending on the chosen backend.
Rather than devising separate URI construction
conventions to represent different layout and
formatting information in GUIDO, all layout
and formatting options are implemented as key-
value pairs to make interacting with the server
uniform in keeping with RESTful style.

4.5 Return values
In order to handle the diversity of return types
provided by the GUIDO API, the server at-
tempts to find MIME types that best approx-
imate the values returned by API functions.
Sometimes, there is a direct correspondance.
For example, the formats of images returned by
the GUIDOEngine library when compiled with
Qt (JPEG, PNG and SVG) are all MIME types.

In many cases, the GUIDO API returns cus-
tom structures that have no MIME type equiv-
alent. In these cases, JSON [Crockford, 2013] is
used to represent hierarchical relationships con-
tained within these structures.

For example, the Time2GraphicMap struct
is a composite structure consisting of pairs
of TimeSegment and FloatRect structures.
TimeSegment corresponds to beginning and end
of a musical event whereas FloatRect corre-
sponds to its placement on the page. To rep-
resent these structures in server responses, the
GUIDO server uses JSON where key-value pairs
correspond to a structure’s element’s name and
its value. An example of this is given in Sec-
tion 4.6.3, time corresponds to a TimeSegment
and graph corresponds to a FloatRect.

4.6 Examples
4.6.1 voicescount
The command voicescount returns the number
of voices in a score. It exposes the GUIDO En-
gine API method GuidoCountVoices. For ex-
ample, the request:
http://guido.grame.fr:8000/<key>/voicescount

yields the following result:
{

"<key>": {
"voicescount": 1

}
}

where "<key>" is the SHA-1 key given by the
URI.
4.6.2 pageat
The command pageat returns the page given
a specific date, expressed as a rational num-
ber. It exposes the GUIDO Engine API method
GuidoFindPageAt. For example, the request:
http://guido.grame.fr:8000/<key>/pageat?date=1/4

yields the following result:
{

"<key>": {
"page": 1,
"date": "1/4"

}
}

4.6.3 staffmap
The command staffmap returns a map of the
space each element of a given staff takes up
in 2D space (represented by a box) and time
space (represented as an interval of rational
numbers). It exposes the GUIDO Engine API
method GuidoGetStaffMap. For example, the
request:
http://guido.grame.fr:8000/<key>/staffmap?staff=1

yields the following result, abbreviated below to
minimize its space on the page:

{
"<key>": {

"staffmap": [
{

"graph": {
"left": 916.18,
"top": 497.803,
"right": 1323.23,
"bottom": 838.64

},
"time": {

"start": "0/1",
"end": "1/4"

}
},
.
.
.
{

"graph": {
"left": 2137.33,
"top": 497.803,
"right": 2595.51,
"bottom": 838.64

},
"time": {

"start": "3/4",
"end": "1/1"

}
}

]
}

}

5 Conclusion
The GUIDO HTTP server uses RESTful archi-
tectural principles such as statelessness, a uni-
form interface and a separation of client-server
functionality in order to provide low-latency in-
formation retrieval. Information corresponds
to uploaded GMN scores, encoded as various
MIME types and transmitted via the HTTP
protocol. The server exposes the robust GUIDO
Engine public API via an interface based on
standardized URI construction. It is intended
for use by various applications needing to vi-
sualize musical scores and process score-related
data. It is especially well-suited as an alter-
native to embarking libraries or external appli-
cations in score processing software. As cloud
computing and mobile human-computer inter-
action becomes more common, this form of data
transmission and processing is increasingly nec-
essary. The GUIDO HTTP server intends to fill
this by following RESTful architectural recom-
mendations that have proven successful in other

server-based services.
The GUIDO project is an open source project

hosted by sourceforge11. The GUIDO HTTP
server is running at

http://guidoservice.grame.fr/.

6 Acknowledgements
This work has been realized in the framework
of the INEDIT project that is supported by
the French National Research Agency [ANR-12-
CORD-0009].

References
T. Bonte. 2009. MuseScore: Open source
music notation and composition soft-
ware. Technical report, Free and Open
source Software Developers’ European
Meeting. http://www.slideshare.net/
thomasbonte/musescore-at-fosdem-2009.

D. Crockford. 2013. The json data inter-
change format. Technical report, ECMA In-
ternational, October.

C. Daudin, D. Fober, S. Letz, and Y. Orlarey.
2009. The Guido Engine - a toolbox for music
scores rendering. In Proceedings of the Linux
Audio Conference 2009, pages 105–111.

R. Fielding. 2000. Architectural Styles and
the Design of Network-based Software Archi-
tectures. Ph.D. thesis, University of Califor-
nia, Irvine.

P. Gallagher. 2012. Secure hash standard
(shs). Technical report, National Institute of
Standards and Technology, March.

Grame, 2014a. Guido Engine Web API Doc-
umentation v.0.50.

Grame, 2014b. GuidoLib v.1.52.

C. Grothoff. 2014. GNU libmicrohttpd:
a library for creating an embedded http
server. http://www.gnu.org/software/
libmicrohttpd/index.html.

H. H. Hoos and K. A. Hamel. 1997. The
GUIDO Music Notation Format Specification
- version 1.0, part 1: Basic GUIDO. Tech-
nical report TI 20/97, Technische Universitat
Darmstadt.

H. Hoos, K. Hamel, K. Renz, and J. Kilian.
1998. The GUIDO Music Notation Format - a
Novel Approach for Adequately Representing
11http://guidolib.sf.net

Score-level Music. In Proceedings of the Inter-
national Computer Music Conference, pages
451–454. ICMA.

Renz K. and H. Hoos. 1998. A Web-based
Approach to Music Notation Using GUIDO.
In Proceedings of the International Computer
Music Conference, pages 455–458. ICMA.

L. Richardson and S. Ruby. 2008. RESTful
Web Services. O’Reilly Media.

http://guidoservice.grame.fr/
http://www.slideshare.net/thomasbonte/musescore-at-fosdem-2009
http://www.slideshare.net/thomasbonte/musescore-at-fosdem-2009
http://www.gnu.org/software/libmicrohttpd/index.html
http://www.gnu.org/software/libmicrohttpd/index.html
http://guidolib.sf.net

	Online musical editing
	Online music notation editors
	Online score sharing software
	Online music JIT compilation services
	A RESTful alternative

	Representational state transfer
	The GUIDO HTTP server : an overview
	The POST method
	The GET method
	Uniform interface

	The GUIDO HTTP server as an API
	SHA-1 key as musical score
	Function as URI segment
	Arguments as key-value pairs
	Layout and formatting options as key-value pairs
	Return values
	Examples
	voicescount
	pageat
	staffmap

	Conclusion
	Acknowledgements

