
DSP Programming with Faust, Q and SuperCollider

Yann ORLAREY
Grame, Centre National
de Creation Musicale

Lyon, France
orlarey@grame.fr

Albert GRÄF
Dept. of Music Informatics

Johannes Gutenberg University
Mainz, Germany

Dr.Graef@t-online.de

Stefan KERSTEN
Dept. of Communication

Science
Technical University

Berlin, Germany
stefan.kersten@tu-berlin.de

Abstract
Faust is a functional programming language for real-
time signal processing and synthesis that targets
high-performance signal processing applications and
audio plugins. The paper gives a brief introduction
to Faust and discusses its interfaces to Q, a general-
purpose functional programming language, and Su-
perCollider, an object-oriented sound synthesis lan-
guage and engine.

Keywords
Computer music, digital signal processing, Faust
programming language, functional programming, Q
programming language, SuperCollider

1 Introduction

Faust is a programming language for real-time
signal processing and synthesis that targets
high-performance signal processing applications
and audio plugins. This paper gives a brief in-
troduction to Faust, emphasizing practical ex-
amples rather than theoretic concepts which can
be found elsewhere (Orlarey et al., 2004).

A Faust program describes a signal proces-
sor, a DSP algorithm that transforms input
signals into output signals. Faust is a func-
tional programming language which models sig-
nals as functions (of time) and DSP algorithms
as higher-order functions operating on signals.
Faust programs are compiled to efficient C++
code which can be included in C/C++ appli-
cations, and which can also be executed ei-
ther as standalone programs or as plugins in
other environments. In particular, in this pa-
per we describe Faust’s interfaces to Q, an in-
terpreted, general-purpose functional program-
ming language based on term rewriting (Gräf,
2005), and SuperCollider (McCartney, 2002),
the well-known object-oriented sound synthesis
language and engine.

2 Faust

The programming model of Faust combines a
functional programming approach with a block-

diagram syntax. The functional programming
approach provides a natural framework for sig-
nal processing. Digital signals are modeled as
discrete functions of time, and signal processors
as second order functions that operate on them.
Moreover Faust block-diagram composition op-
erators, used to combine signal processors to-
gether, fit in the same picture as third order
functions.

Faust is a compiled language. The compiler
translates Faust programs into equivalent C++
programs. It uses several optimization tech-
niques in order to generate the most efficient
code. The resulting code can usually compete
with, and sometimes outperform, DSP code di-
rectly written in C. It is also self-contained and
doesn’t depend on any DSP runtime library.

Thanks to specific architecture files, a single
Faust program can be used to produce code for a
variety of platforms and plugin formats. These
architecture files act as wrappers and describe
the interactions with the host audio and GUI
system. Currently more than 8 architectures
are supported (see Table 1) and new ones can
be easily added.

alsa-gtk.cpp ALSA application
jack-gtk.cpp JACK application
sndfile.cpp command line application
ladspa.cpp LADSPA plugin
max-msp.cpp Max MSP plugin
supercollider.cpp Supercollider plugin
vst.cpp VST plugin
q.cpp Q language plugin

Table 1: The main architecture files available
for Faust

In the following subsections we give a short
and informal introduction to the language
through two simple examples. Interested read-
ers can refer to (Orlarey et al., 2004) for a more
complete description.

2.1 A simple noise generator

A Faust program describes a signal processor
by combining primitive operations on signals
(like +,−, ∗, /,√, sin, cos, . . .) using an algebra
of high level composition operators (see Table
2). You can think of these composition opera-
tors as a generalization of mathematical func-
tion composition f ◦ g.

f ∼ g recursive composition
f , g parallel composition
f : g sequential composition
f <: g split composition
f :> g merge composition

Table 2: The five high level block-diagram com-
position operators used in Faust

A Faust program is organized as a set of
definitions with at least one for the keyword
process (the equivalent of main in C).

Our noise generator example noise.dsp only
involves three very simple definitions. But it
also shows some specific aspects of the language:

random = +(12345) ~ *(1103515245);
noise = random/2147483647.0;
process = noise * checkbox("generate");

The first definition describes a (pseudo) ran-
dom number generator. Each new random num-
ber is computed by multiplying the previous one
by 1103515245 and adding to the result 12345.

The expression +(12345) denotes the op-
eration of adding 12345 to a signal. It is
an example of a common technique in func-
tional programming called partial application:
the binary operation + is here provided with
only one of its arguments. In the same way
*(1103515245) denotes the multiplication of a
signal by 1103515245.

The two resulting operations are recursively
composed using the ∼ operator. This opera-
tor connects in a feedback loop the output of
+(12345) to the input of *(1103515245) (with
an implicit 1-sample delay) and the output of
*(1103515245) to the input of +(12345).

The second definition transforms the random
signal into a noise signal by scaling it between
-1.0 and +1.0.

Finally, the definition of process adds a simple
user interface to control the production of the
sound. The noise signal is multiplied by a GUI
checkbox signal of value 1.0 when it is checked
and 0.0 otherwise.

2.2 Invoking the compiler

The role of the compiler is to translate Faust
programs into equivalent C++ programs. The
key idea to generate efficient code is not to com-
pile the block diagram itself, but what it com-
putes.

Driven by the semantic rules of the language
the compiler starts by propagating symbolic sig-
nals into the block diagram, in order to discover
how each output signal can be expressed as a
function of the input signals.

These resulting signal expressions are then
simplified and normalized, and common subex-
pressions are factorized. Finally these expres-
sions are translated into a self contained C++
class that implements all the required computa-
tion.

To compile our noise generator example we
use the following command :

$ faust noise.dsp

This command generates the C++ code
in Figure 1. The generated class con-
tains five methods. getNumInputs() and
getNumOutputs() return the number of input
and output signals required by our signal pro-
cessor. init() initializes the internal state of
the signal processor. buildUserInterface()
can be seen as a list of high level commands,
independent of any toolkit, to build the user
interface. The method compute() does the ac-
tual signal processing. It takes 3 arguments: the
number of frames to compute, the addresses of
the input buffers and the addresses of the out-
put buffers, and computes the output samples
according to the input samples.

The faust command accepts several options
to control the generated code. Two of them
are widely used. The option -o outputfile spec-
ifies the output file to be used instead of the
standard output. The option -a architecturefile
defines the architecture file used to wrap the
generate C++ class.

For example the command faust -a q.cpp
-o noise.cpp noise.dsp generates an exter-
nal object for the Q language, while faust -a
jack-gtk.cpp -o noise.cpp noise.dsp gen-
erates a standalone Jack application using the
GTK toolkit.

Another interesting option is -svg that gen-
erates one or more SVG graphic files that rep-
resent the block-diagram of the program as in
Figure 2.

class mydsp : public dsp
{
private:

int R0_0;
float fcheckbox0;

public:

virtual int getNumInputs() {
return 0;

}
virtual int getNumOutputs() {
return 1;

}
virtual void init(int samplingFreq) {
fSamplingFreq = samplingFreq;
R0_0 = 0;
fcheckbox0 = 0.0;

}
virtual void buildUserInterface(UI* ui) {
ui->openVerticalBox("faust");
ui->addCheckButton("generate",

&fcheckbox0);
ui->closeBox();

}
virtual void compute (int count,

float** input, float** output) {
float* output0; output0 = output[0];
float ftemp0 = 4.656613e-10f*fcheckbox0;
for (int i=0; i<count; i++) {
R0_0 = (12345 + (1103515245 * R0_0));
output0[i] = (ftemp0 * R0_0);

}
}

};

Figure 1: The C++ implementation code of the
noise generator produced by the Faust compiler

2.3 The Karplus-Strong Algorithm

Karplus-Strong is a well known algorithm first
presented by Karplus and Strong in 1983
(Karplus and Strong, 1983). Whereas not com-
pletely trivial, the principle of the algorithm
is simple enough to be described in few lines
of Faust, while producing interesting metallic
plucked-string and drum sounds.

The sound is produced by an impulse of noise
that goes into a resonator based on a delay line
with a filtered feedback. The user interface con-
tains a button to trigger the sound production,
as well as two sliders to control the size of both
the resonator and the noise impulse, and the
amount of feedback.

Figure 2: Graphic block-diagram of the noise
generator produced with the -svg option

2.3.1 The noise generator
We simply reuse here the noise generator of the
previous example (subsection 2.1).

random = +(12345) ~ *(1103515245);
noise = random/2147483647.0;

2.3.2 The trigger
The trigger is used to transform the signal de-
livered by a user interface button into a pre-
cisely calibrated control signal. We want this
control signal to be 1.0 for a duration of exactly
n samples, independentely of how long the but-
ton is pressed.

impulse(x) = x - mem(x) : >(0.0);
decay(n,x) = x - (x>0.0)/n;
release(n) = + ~ decay(n);
trigger(n) = button("play") : impulse

: release(n) : >(0.0);

For that purpose we first transforms the but-
ton signal into a 1-sample impulse correspond-
ing to the raising front of the button signal.
Then we add to this impulse a kind of release
that will decrease from 1.0 to 0.0 in exactly
n samples. Finally we produce a control sig-
nal which is 1.0 when the signal with release is
greater than 0.0.

All these steps are combined in a four stages
sequential composition with the operator ’:’.
2.3.3 The resonator
The resonator uses a variable delay line imple-
mented using a table of samples. Two consecu-
tive samples of the delay line are averaged, at-
tenuated and fed back into the table.

index(n) = &(n-1) ~ +(1);

delay(n,d,x)= rwtable(n, 0.0, index(n),
x, (index(n)-int(d))&(n-1));

average(x) = (x+mem(x))/2;
resonator(d,a) = (+ : delay(4096, d-1))

~ (average : *(1.0-a));

2.3.4 Putting it all together
The last step is to put all the pieces together
in a sequential composition. The parameters of
the trigger and the resonator are controlled by
two user interface sliders.

dur = hslider("duration",128,2,512,1);
att = hslider("attenuation",

0.1,0,1,0.01);
process = noise

: *(trigger(dur))
: resonator(dur,att);

A screen shot of the resulting application
(compiled with the jack-gtk.cpp architecture)
is reproduced in Figure 3. It is interesting to
note that despite the fact that the duration
slider is used twice, it only appears once in the
user interface. The reason is that Faust enforces
referential transparency for all expressions, in
particular user interface elements. Things are
uniquely and unequivocally identified by their
definition and naming is just a convenient short-
cut. For example in the following program,
process always generate a null signal:

foo = hslider("duration", 128, 2, 512, 1);
faa = hslider("duration", 128, 2, 512, 1);
process = foo - faa;

Figure 3: Screenshot of the Karplus-Strong ex-
ample generated with the jack-gtk.cpp archi-
tecture

3 Faust and Q

Faust is tailored to DSP programming, and
as such it is not a general-purpose program-
ming language. In particular, it does not by

itself have any facilities for other tasks typi-
cally encountered in signal processing and syn-
thesis programs, such as accessing the operating
system environment, real-time processing of au-
dio and MIDI data, or presenting a user inter-
face for the application. Thus, as we already
discussed in the preceding section, all Faust-
generated DSP programs need a supporting in-
frastructure (embodied in the architecture file)
which provides those bits and pieces.

One of the architectures included in the Faust
distribution is the Q language interface. Q
is an interpreted functional programming lan-
guage which has the necessary facilities for do-
ing general-purpose programming as well as soft
real-time processing of MIDI, OSC a.k.a. Open
Sound Control (Wright et al., 2003) and au-
dio data. The Q-Faust interface allows Faust
DSPs to be loaded from a Q script at runtime.
From the perspective of the Faust DSP, Q acts
as a programmable supporting environment in
which it operates, whereas in Q land, the DSP
module is used as a “blackbox” to which the
script feeds chunks of audio and control data,
and from which it reads the resulting audio out-
put. By these means, Q and Faust programs can
be combined in a very flexible manner to im-
plement full-featured software synthesizers and
other DSP applications.

In this section we give a brief overview of
the Q-Faust interface, including a simple but
complete monophonic synthesizer example. For
lack of space, we cannot give an introduction
to the Q language here, so instead we refer
the reader to (Gräf, 2005) and the extensive
documentation available on the Q website at
http://q-lang.sf.net.

3.1 Q module architecture
Faust’s side of the Q-Faust interface consists of
the Q architecture file, a little C++ code tem-
plate q.cpp which is used with the Faust com-
piler to turn Faust DSPs into shared modules
which can be loaded by the Q-Faust module at
runtime. This file should already be included in
all recent Faust releases, otherwise you can also
find a copy of the file in the Q-Faust distribution
tarball.

Once the necessary software has been in-
stalled, you should be able to compile a Faust
DSP to a shared module loadable by Q-Faust
as follows:

$ faust -a q.cpp -o mydsp.cpp mydsp.dsp
$ g++ -shared -o mydsp.so mydsp.cpp

Note: If you want to load several different
DSPs in the same Q script, you have to make
sure that they all use distinct names for the
mydsp class. With the current Faust version this
can be achieved most easily by just redefining
mydsp, to whatever class name you choose, dur-
ing the C++ compile stage, like so:

$ g++ -shared -Dmydsp=myclassname
-o mydsp.so mydsp.cpp

3.2 The Q-Faust module
The compiled DSP is now ready to be used in
the Q interpreter. A minimal Q script which
just loads the DSP and assigns it to a global
variable looks as follows:

import faust;
def DSP = faust_init "mydsp" 48000;

The first line of the script imports Q’s faust
module which provides the operations to instan-
tiate and operate Faust DSPs. The faust_init
function loads a shared module (mydsp.so in
this example, the .so suffix is supplied au-
tomatically) and returns an object of Q type
FaustDSP which can then be used in subse-
quent operations. The second parameter of
faust_init, 48000 in this example, denotes the
sample rate in Hz. This can be an arbitrary in-
teger value which is available to the hosted DSP
(it is up to the DSP whether it actually uses this
value in some way).

In the following examples we assume that you
have actually loaded the above script in the Q
interpreter; the commands below can then be
tried at the interpreter’s command prompt.

The faust_info function can be used to de-
termine the number of input/output channels as
well as the “UI” (a data structure describing the
available control variables) of the loaded DSP:

==> def (N,M,UI) = faust_info DSP

To actually run the DSP, you’ll need some au-
dio data, encoded using 32 bit (i.e., single pre-
cision) floating point values as a byte string. (A
byte string is a special kind of data object which
is used in Q to represent arbitrary binary data,
such as a C vector with audio samples in this
case.) Suppose you already have two channels
of audio data in the IN1 and IN2 variables and
the DSP has 2 input channels, then you would
pass the data through the DSP as follows:

==> faust_compute DSP [IN1,IN2]

This will return another list of byte strings,
containing the 32 bit float samples produced by
the DSP on its output channels, being fed with
the given input data.

Some DSPs (e.g., synthesizers) don’t actually
take any audio input, in this case you just spec-
ify the number of samples to be generated in-
stead:

==> faust_compute DSP 1024

Most DSPs also take additional control in-
put. The control variables are listed in the UI
component of the faust_info return value. For
instance, suppose that there is a “Gain” param-
eter listed there, it might look as follows:

==> controls UI!0
hslider <<Ref>> ("Gain",1.0,0.0,10.0,0.1)

The second parameter of the hslider con-
structor indicates the arguments the control
was created with in the .dsp source file (see
the Faust documentation for more details on
this). The first parameter is a Q reference
object which points to the current value of
the control variable. The reference can be ex-
tracted from the control description with the
control_ref function and you can then change
the value with Q’s put function before invok-
ing faust_compute (changes of control vari-
ables only take effect between different invoka-
tions of faust_compute):

==> def GAIN = control_ref (controls UI!0)

==> put GAIN 2.0

3.3 Monophonic synthesizer example
For a very simple, but quite typical and fully
functional example, let us take a look at the
monophonic synthesizer program in Figure 4.
It basically consists of two real-time threads:
a control loop which takes MIDI input and
changes the synth DSP’s control variables ac-
cordingly, and an audio loop which just pulls
audio data from the DSP at regular intervals
and outputs it to the audio interface. The Faust
DSP we use here is the simple additive synth
shown in Figure 5.

The header section of the Q script imports the
necessary Q modules and defines some global
variables which are used to access the MIDI
input and audio output devices as well as the
Faust DSP. It also extracts the control variables

import audio, faust, midi;

def (_,_,_,_,SR) = audio_devices!AUDIO_OUT,
SR = round SR, BUFSZ = 256,
IN = midi_open "Synth",
_ = midi_connect (midi_client_ref

"MidiShare/ALSA Bridge") IN,
OUT = open_audio_stream AUDIO_OUT PA_WRITE

(SR,1,PA_FLOAT32,BUFSZ),
SYNTH = faust_init "synth" SR,
(N,M,UI) = faust_info SYNTH, CTLS = controls UI,
CTLD = dict (zip (map control_label CTLS)

(map control_ref CTLS));

def [FREQ,GAIN,GATE] =
map (CTLD!) ["freq","gain","gate"];

/***/

freq N = 440*2^((N-69)/12);
gain V = V/127;

process (_,_,_,note_on _ N V)
= put FREQ (freq N) ||
put GAIN (gain V) ||
put GATE 1 if V>0;

= put GATE 0 if freq N = get FREQ;

midi_loop = process (midi_get IN) || midi_loop;

audio_loop = write_audio_stream OUT
(faust_compute SYNTH BUFSZ!0) ||
audio_loop;

/***/

def POL = SCHED_RR, PRIO = 10;
realtime = setsched this_thread POL PRIO;

synth = writes "Hit <CR> to stop: " ||
reads || ()

where H1 = thread (realtime || midi_loop),
H2 = thread (realtime || audio_loop);

Figure 4: Q script for the monophonic synth
example

from the Faust DSP and stores them in a dictio-
nary, so that we can finally assign the references
to a corresponding collection of global variables.
These variables are then used in the control loop
to set the values of the control variables.

The second section of the code contains the
definitions of the control and audio loop func-
tions. It starts out with two helper functions
freq and gain which are used to map MIDI
note numbers and velocities to the correspond-
ing frequency and gain values. The process
function (not to be confused with the process
“main” function of the Faust program!) does
the grunt work of translating an incoming MIDI

import("music.lib");

// control variables

vol = nentry("vol", 0.3, 0, 10, 0.01);

attk = nentry("attack", 0.01, 0, 1, 0.001);
decy = nentry("decay", 0.3, 0, 1, 0.001);
sust = nentry("sustain", 0.5, 0, 1, 0.01);
rels = nentry("release", 0.2, 0, 1, 0.001);

freq = nentry("freq", 440, 20, 20000, 1);
gain = nentry("gain", 1, 0, 10, 0.01);
gate = button("gate");

// simple monophonic synth

smooth(c) = *(1-c) : +~*(c);

voice = gate : adsr(attk, decy, sust, rels) :
*(osci(freq)+0.5*osci(2*freq)+
0.25*osci(3*freq)) :

*(gain : smooth(0.999));

process = vgroup("synth", voice : *(vol));

Figure 5: Faust source for the monophonic
synth example

event to the corresponding control settings. In
this simple example it does nothing more than
responding to note on and off messages (as
usual, a note off is just a note on with veloc-
ity 0). The example also illustrates how MIDI
messages are represented as an “algebraic” data
type in Q, and how the note and velocity infor-
mation is extracted from this data using “pat-
tern matching.” In the case of a note on mes-
sage we change the FREQ and GAIN of the single
synth voice accordingly and then set the GATE
variable to 1, to indicate that a note is play-
ing. For a note off message, we simply reset the
GATE variable to 0; in the DSP, this triggers the
release phase of the synth’s ADSR envelop.

The process function is invoked repeat-
edly during execution of midi_loop. The
audio_loop function just keeps reading the au-
dio output of the DSP and sends it to the audio
output stream. The two loops are to be exe-
cuted asynchronously, in parallel. (It is worth
noting here that the necessary protection of
shared data, i.e., the control variable references,
is done automatically behind the scenes.)

The third section of the script contains the
main entry point, the synth function which
kicks off two real-time threads running the
midi_loop and audio_loop functions and then
waits for user input. The function returns a

Figure 6: QFSynth program

“void” () value as soon as the user hits the car-
riage return key. (At this point the two thread
handles H1 and H2 are garbage-collected imme-
diately and the corresponding threads are thus
terminated automatically, so there is no need to
explicitly cancel the threads.)

Of course the above example is rather limited
in functionality (that shouldn’t come as a big
surprise as it is just about one page of Faust
and Q source code). A complete example of
a Faust-based polyphonic software synthesizer
with GUI can be found in the QFSynth appli-
cation (cf. Figure 6) which is available as a sep-
arate package from the Q website.

3.4 Q, Faust and SuperCollider
The Q-Faust interface provides a direct way to
embed Faust DSPs in Q programs, which is use-
ful for testing DSPs and for simple applications
with moderate latency requirements. For more
elaborate applications it is often convenient to
employ a dedicated software synthesis engine
which does the grunt work of low-latency con-
trol data and audio processing. This is where
Q’s OSC-based SuperCollider interface (Gräf,
2005) comes in handy. Using SuperCollider’s
Faust plugin interface, described in the next sec-
tion, Faust DSPs can also be loaded into the
SuperCollider sound server and are then ready
to be operated from Q programs via OSC.

4 Faust and SuperCollider3

SuperCollider3 (McCartney, 2002) is a real-
time synthesis and composition framework,

divided into a synthesis server application
(scsynth) and an object-oriented realtime lan-
guage (sclang). Any application capable
of sending OpenSoundControl (Wright et al.,
2003) messages can control scsynth, one no-
table example being Q (section 3).

Correspondingly, support for plugins gener-
ated by Faust is divided into an interface to
scsynth and sclang, respectively.

4.1 Interface to scsynth
In order to compile a Faust plugin for the Su-
perCollider3 synthesis architecture, you have to
use the corresponding architecture file:

$ faust -a supercollider.cpp \
-o noise.cpp noise.dsp

For compiling the plugin on Linux you
can use the provided pkg-config specification,
which is installed automatically when you pass
DEVELOPMENT=yes to scons when building Su-
perCollider:

$ g++ -shared -o noise.so \
‘pkg-config --cflags libscsynth‘ \
noise.cpp

The resulting plugin should be put in a
place where scsynth can find it, e.g. into
~/share/SuperCollider/Extensions/Faust
on Linux.

Unit-generator plugins in SuperCollider are
referenced by name on the server; the plu-
gin generated by Faust currently registers itself
with the C++ filename sans extension. In fu-
ture versions of Faust the plugin name will be
definable in the process specification itself.

4.2 Interface to sclang

Faust can produce an XML description of a plu-
gin, including various meta data and the struc-
tural layout of the user interface.

This information is used by faust2sc in the
Faust distribution to generate a SuperCollider
class file, which can be compiled and subse-
quently used from within sclang.

For example,

$ faust -xml -o /dev/null noise.dsp
$ faust -xml -o /dev/null karplus.dsp
$ faust2sc -p Faust -o Faust.sc \

noise.dsp.xml karplus.dsp.xml

generates a SuperCollider source file, that, when
compiled by sclang, makes available the respec-
tive plugins for use in synth definitions.

Now copy the source file into sclang’s search
path, e.g.

~/share/SuperCollider/Extensions/Faust
on Linux.

Since scsynth doesn’t provide GUI facilities,
UI elements in Faust specifications are mapped
to control rate signals on the synthesis server.
The argument order is determined by the order
of appearance in the (flattened) block diagram
specification; audio inputs (named in1 . . . inN)
are expected before control inputs. The freeverb
example plugin has the following arguments to
the ar instance creation method when used from
sclang:

in1 in2 damp(0.5) roomsize(0.5) wet(0.3333)

i.e. first the stereo input pair followed by the
control inputs including default values.

4.3 Examples
Unsurprisingly plugins generated by Faust can
be used just like any other unit generator plu-
gin, although the argument naming can be a
bit verbose, depending on the labels used in UI
definitions.

Assuming the server has been booted, the
“noise” example found in the distribution can
be tested like this:

{ Pan2.ar(
FaustNoise.ar(0.2),
LFTri.kr(0.1) * 0.4)

}.play

A more elaborate example involves the
“karplus” example plugin and shows how to use
keyword arguments.

{
FaustKarplus.ar(
play: { |i|
Impulse.kr(
exprand(10/6*(i+1), 20)
* SinOsc.kr(0.1).range(0.3, 1)

)
} ! 6,
duration_samples: LFSaw.kr(0.1)

.range(80, 128),
attenuation: LFPar.kr(0.055, pi/2)

.range(0.1, 0.4)

.squared,
level: 0.05

).clump(2).sum
}.play

Note that the trigger button in the jack-gkt
example has been replaced by a control rate im-
pulse generator connected to the play input.

Rewriting the monophonic synth example
from section 3.3 in SuperCollider is a matter
of recompiling the plugin,

$ faust -a supercollider.cpp \
-o synth.cpp synth.dsp

$ g++ -shared -o synth.so \
‘pkg-config --cflags libscsynth‘ \
synth.cpp

$ faust -xml -o /dev/null synth.dsp
$ faust2sc -p Faust -o FaustSynth.sc \

synth.dsp.xml

and installing synth.so and FaustSynth.sc to
the appropriate places.

The corresponding SynthDef just wraps the
Faust plugin:

(
SynthDef(\faustSynth, {
| trig(0), freq(440), gain(1),
attack(0.01), decay(0.3),
sustain(0.5), release(0.2) |

Out.ar(
0,
FaustSynth.ar(
gate: trig,
freq: freq,
gain: gain,
attack: attack,
decay: decay,
sustain: sustain,
release: release

)
)

}, [\tr]).send(s)
)

and can now be used with SuperCollider’s pat-
tern system:

(
TempoClock.default.tempo_(2);
x = Synth(\faustSynth);
p = Pbind(
\instrument, \faustSynth,
\trig, 1,
\sustain, 0.2,
\decay, 0.1,
\scale, #[0, 3, 5, 7, 10],
\release, Pseq(
[Pgeom(0.2, 1.5, 4),
4,
Pgeom(0.2, 0.5, 4)],
inf

),
\dur, Pseq(
[Pn(1/4, 4),
15.5/4,
Pn(1/8, 4)],
inf

),
\degree, Pseq(
[1, 2, 3, 4, 5, 2, 3, 4, 5].mirror,
inf

)
).play(
protoEvent: (
type: \set,
args: [\trig, \freq, \release]

)
)
)

5 Conclusion

Existing functional programming environments
have traditionally been focused on non real-
time applications such as artificial intelligence,
programming language compilers and inter-
preters, and theorem provers. While multime-
dia has been recognized as one of the key areas
which could benefit from functional program-
ming techniques (Hudak, 2000), the available
tools are not capable of supporting real-time ex-
ecution with low latency requirements. This is
unfortunate since real time is where the real fun
is in multimedia applications.

The Faust programming language changes
this situation. You no longer have to program
your basic DSP modules in C or C++, which is
a tedious and error-prone task. Faust allows you
to develop DSPs in a high-level functional pro-
gramming language which can compete with,
or even surpass the efficiency of carefully hand-
coded C routines. The SuperCollider Faust plu-
gin interface lets you execute these components
in a state-of-the-art synthesis engine. More-
over, using Q’s Faust and SuperCollider inter-
faces you can also program the real-time control
of multimedia applications in a modern-style
functional programming language. Together,
Faust, Q and SuperCollider thus provide an ad-
vanced toolset for programming DSP and com-
puter music applications which should be useful
both for practical application development and
educational purposes.

References

Albert Gräf. 2005. Q: A functional program-
ming language for multimedia applications.
In Proceedings of the 3rd International Linux
Audio Conference (LAC05), pages 21–28,
Karlsruhe. ZKM.

Paul Hudak. 2000. The Haskell School of Ex-
pression: Learning Functional Programming
Through Multimedia. Cambridge University
Press.

K. Karplus and A. Strong. 1983. Digital syn-
thesis of plucked-string and drum timbres.
Computer Music Journal, 7(2):43–55.

James McCartney. 2002. Rethinking the com-
puter music language: SuperCollider. Com-
puter Music Journal, 26(4):61–68. See also
http://supercollider.sourceforge.net.

Y. Orlarey, D. Fober, and S. Letz. 2004. Syn-
tactical and semantical aspects of Faust. Soft
Computing, 8(9):623–632.

Matthew Wright, Adrian Freed, and Ali Mo-
meni. 2003. OpenSound Control: State of
the art 2003. In Proceedings of the Confer-
ence on New Interfaces for Musical Expres-
sion (NIME-03), pages 153–159, Montreal.

